
Project Luna

Web application pentest
Results report

MindBytes GmbH | Probststraße 15 | 70567 Stuttgart | Germany

+49 711 20709567 | hallo@mind-bytes.de

Represented by Christian Stehle, Nina Wagner, Simon Holl
HRB 790784 | Local Court: Stuttgart

Version 1.0
Confidential
Contact: hallo@mind-bytes.de

Example company

mailto:hallo@mind-bytes.de
mailto:%7B%7Bpentester_mail.mail%7D%7D

Contents

1 Management summary .. 3

2 Technical summary .. 5

3 Findings ... 8

3.1 FIN-01: Manipulating database queries – SQL Injection 8

3.2 FIN-02: User impersonation .. 11

3.3 FIN-03: Injecting malicious content into website cache 14

3.4 FIN-04: Spring Boot Actuator enabled ... 18

3.5 FIN-05: Execution of sensitive actions without identity verification
... 20

3.6 FIN-06: Missing HTTP security headers .. 22

4 Project scope ... 24

4.1 Persons involved ... 24

4.2 Test period .. 24

4.3 Test subject ... 24

4.4 Access method .. 25

4.5 Provided accounts .. 25

4.6 Provided information ... 25

5 Appendix ... 26

5.1 Explanations of rating scales .. 26

6 List of changes .. 26

7 Disclaimer .. 27

8 Legal information ... 27

MindBytes GmbH Page 2 of 27

1 Management summary
Subject of the test: Example web application Need for action: Urgent

Overall risk

Multiple vulnerabilities allow access to other customers' data. This includes personal data, which could lead
to privacy violations and reputational damage.
The security of user accounts is compromised due to various issues. Attackers can gain full control of
accounts and view, modify, or delete data.
The monitoring endpoints of the web server expose sensitive technical information that is not relevant for
regular users of the application. For example, database credentials or session cookies of other users are
disclosed. This information is useful for malicious actors to continue their attacks.
Additional configuration can further improve the application's security and make it harder to exploit
vulnerabilities.

Overall risk compared to other companies1: Worse than average
Figure 1 - Distribution according to damage

and likelihood

Figure 2 - Distribution according to risk

•

•

•

•

1This is a rating in comparison to other companies and does not allow any conclusions to be drawn about the existing risk in general.

MindBytes GmbH Page 3 of 27

1.1 Recommended actions
The estimation for the remediation is based on our experience and should be validated internally. In general, successful attacks result from a combination of several
vulnerabilities, which is why we recommend that all findings are rectified. When implementing measures, it is important not to view vulnerabilities as individual cases,
but to work on the cause in order to prevent similar vulnerabilities in the future.

Action Remediation Notes on remediation Findings
Remove actuator
⚡

⌚ Urgent
⌛ Hours
💰 No

Quick win: Security can be significantly improved with
minimal effort

3.4 FIN-04: Spring Boot Actuator enabled

Validate user input ⌚ Urgent
⌛ Days
💰 No

User input should generally be considered malicious
and validated before processing

3.1 FIN-01: Manipulating database queries – SQL Injection
3.3 FIN-03: Injecting malicious content into website cache

Prevent account
takeover

⌚ Urgent
⌛ Days
💰 No

A combination of the findings allows for the complete
takeover of other user accounts

3.2 FIN-02: User impersonation
3.5 FIN-05: Execution of sensitive actions without identity
verification

Harden web
application

⌚ Medium-term
⌛ Hours
💰 No

Further improve the security of the application 3.6 FIN-06: Missing HTTP security headers

⌚ Priority: Urgent / Medium-term / Long-term | ⌛ Estimated remediation time per finding: Hours / Days / Weeks | 💰 Cost: No / Probably (not) / Yes

•

•

•

•

MindBytes GmbH Page 4 of 27

2 Technical summary

2.1 Table of findings

Finding
CVSS Score

(v3.1)
MindBytes Score

Damage
MindBytes Score

Likelihood
3.1 FIN-01: Manipulating database queries – SQL Injection
💡 Use parameterized queries for database queries

9.3 (Critical)

3.2 FIN-02: User impersonation
💡 Check signatures of JWTs

8.1 (High)

3.3 FIN-03: Injecting malicious content into website cache
💡 Generate website content, particularly the cache, without user input

7.5 (High)

3.4 FIN-04: Spring Boot Actuator enabled
💡 Disable the Spring Boot Actuator or restrict its functionality

7.5 (High)

3.5 FIN-05: Execution of sensitive actions without identity verification
💡 Require password verification before performing sensitive actions

5.6 (Medium)

3.6 FIN-06: Missing HTTP security headers
💡 Configure HTTP security headers

4.2 (Medium)

Details for each of the findings are described in section 3 Findings. The following files are attached to this report:

📄 Graphical analysis, tabular overview of findings and list of assets with associated findings each asset is affected by:
Project-Luna-Overview.xlsx

🔎 Technical information referenced at relevant points in the findings: Project-Luna-Technical-Details.xlsx

MindBytes GmbH Page 5 of 27

https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:C/C:H/I:N/A:L
https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:N
https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:H/PR:N/UI:R/S:C/C:L/I:H/A:L
https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:L/PR:L/UI:R/S:U/C:H/I:N/A:N/CR:H
https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:L/I:L/A:L
https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:H/PR:N/UI:R/S:U/C:L/I:L/A:N

2.2 Next steps
Post-processing (see section 2.5 Postprocessing)
Viewing and reviewing the results of this report, clarifying questions in the wrap-up meeting
Planning and prioritizing remediation measures, e.g., with the prepared table in the "Findings overview" sheet of the attached file 📄
Implementation and follow-up of remediation measures
Recommended next tests:

Retesting the results to check the effectiveness of the implemented remediation measures
Physical Red Teaming to check how easily unauthorized persons can enter company buildings and production halls
Pentest of the internal infrastructure
Periodic repetition of this pentest to check changes made and test for any new attack techniques

2.3 Starting point in the project
Information provided2 Test scope Approach Starting point3

no (Black-Box) complete hidden (Red Teaming) from outside

some (Grey-Box) limited obvious (Pentest) from inside
comprehensive (White-Box) focused

2.4 Project limitations
There were no factors that impaired the implementation of the project.

1.
2.
3.
4.
5.

◦

◦

◦

◦

2Details see section 4.6 Provided information
3Details see section 4.4 Access method und 4.5 Provided accounts

MindBytes GmbH Page 6 of 27

2.5 Postprocessing
Delete created exceptions in existing protection systems if no retest or follow-up test is planned
Disable provided accounts (see section 4.5 Provided accounts) if you plan a retest or follow-up, otherwise delete those accounts
Delete created company MINDBYTES

1.
2.
3.

MindBytes GmbH Page 7 of 27

3 Findings

3.1 FIN-01: Manipulating database queries – SQL Injection
Affected:

https://example.com
CVSS v3.1: 9.3 (Critical)

3.1.1 Summary
The application uses user input to create SQL queries. This allows manipulated queries to be sent to the database, enabling access to additional stored information.

Possible consequences of successful exploitation

Executing custom SQL queries
Can generally be utilized for various actions:

Reading additional stored sensitive data
Triggering valid database queries without valid input values to correctly execute application flows such as logins
Modifying or deleting data
Overloading the database with resource-intensive queries
Abusing database functions, for instance to access files, execute operating system commands, or make network requests to internal systems

Examples of prerequisites for exploitation

We were able to exploit the vulnerability without authentication
In-depth knowledge of SQL and the vulnerability is useful
Tools are available that assist in exploiting the vulnerability

•

•
•

◦

◦

◦

◦

◦

•
•
•

MindBytes GmbH Page 8 of 27

https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:C/C:H/I:N/A:L

Figure 3 - Vulnerable source sode

3.1.2 Recommendation
Use Prepared Statements with parameterized queries:

This allows the query and the required user input to be sent to the database separately
The database correctly handles user input, preventing query manipulation
An overview of how this can be implemented in different programming languages is provided in this blog post

Look for additional locations within the application that might also be affected

3.1.3 Technical Details
In multiple locations the web application uses user input to construct database
queries. We scanned the source code for this vulnerability using the tool semgrep. The
results of this tool, including further potentially vulnerable locations, can be found in
the attached semgrep-sql.txt. Due to the large number of potentially vulnerable
locations, we did not manually verify all of them.

Below, a specific location is described where, after bypassing the implemented filter,
manipulated queries can be constructed to extract user information. The adjacent
image shows the vulnerable location, including the implemented filter, in the file /
includes/example_db.php.

When accessing the URL https://example.com/includes/example_db.php?
email=1\&hash=%20OR%201=1%20LIMIT%2010%20--%20, the application uses both
the email and hash parameters to create a database query.

•
◦

◦

◦

•

MindBytes GmbH Page 9 of 27

https://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.html#defense-option-1-prepared-statements-with-parameterized-queries
https://bobby-tables.com/
https://github.com/semgrep/semgrep
https://example.com/includes/example_db.php?email=1%5C&hash=%20OR%201=1%20LIMIT%2010%20--%20
https://example.com/includes/example_db.php?email=1%5C&hash=%20OR%201=1%20LIMIT%2010%20--%20

Figure 4 - Impact of the manipulated database query

The inputs are initially filtered to prevent possible query manipulations. However, this filter can be bypassed. When the above URL is accessed, the following SQL
query is constructed:

SELECT * FROM kunden WHERE email = '1\' AND hash = ' OR 1=1 LIMIT 10 -- '

The inserted backslash (\) from the email parameter neutralizes the following quotation mark. The hash parameter is then used to introduce an always-true condition
(1=1) and limit the number of results to 10 rows (LIMIT 10). Also, the rest of the predefined query is commented out (--).

Furthermore, the filter can be bypassed by writing the SQL keywords in
uppercase. During execution, the database does not distinguish between
uppercase and lowercase, but the implemented filter does. Exploiting the
vulnerability without knowledge of the implemented filter is significantly
more challenging but not impossible. A very targeted approach is required to
succeed.

The adjacent image shows the execution of the mentioned URL in the
browser.

Since some potentially vulnerable locations involved SQL queries with the UPDATE keyword, we assume that data could also be maliciously manipulated. To avoid
impacting operations, we did not verify this.

MindBytes GmbH Page 10 of 27

3.2 FIN-02: User impersonation
Affected:

https://example.com
CVSS v3.1: 8.1 (High)

3.2.1 Summary
Due to a weakness in the validation of access tokens, users can take over any other user account and thereby access data from other organizations.

Possible consequences of successful exploitation

Takeover of other user accounts
Access to data from other organizations, in particular

Examples of prerequisites for exploitation

Knowledge of a valid JSON Web Token for any user, e.g., by accessing the publicly available demo environment
Basic understanding of how JSON Web Tokens (JWT) work
Knowledge of the user ID of the other user account:

These are used in URLs and exposed in various locations, such as browser histories and server logs; see also RFC 3986

•

•
•

•
•
•

◦

MindBytes GmbH Page 11 of 27

https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:N
https://datatracker.ietf.org/doc/html/rfc3986#section-7.5

Figure 5 - Analysis of a JWT

3.2.2 Recommendation
Ensure the authenticity of a JWT through signature verification for all values stored in the JWT
Validate signatures before performing any actions and reject JWTs with invalid or missing signatures

3.2.3 Technical Details
A valid JWT can be manipulated to impersonate another user. This allows the takeover of the user
account of any other user—even outside the user's organization. To achieve this, only the user ID of
the targeted user account needs to be known, which is being exposed in several other places.

The behavior is due to a faulty signature verification of the JWT.

Below are the steps describing how the user pentest01, associated with MB-Organization1, can
gain access to and take over the account of pentest04, the owner of MB-Organization2.

The described steps can be used for all endpoints where authentication is handled via JWT.

For example, a password change for the compromised user would also be possible this way. See
also 3.5 FIN-05: Execution of sensitive actions without identity verification .

Preparation – obtain user ID of pentest04:
The user ID (asd123-a12f-a12f-a12f-09asdoaijs) of user pentest04 must be known. As user IDs are sometimes included in URLs (e.g., https://example.com/consumer/
12322112/users/asd123-a12f-a12f-a12f-09asdoaijs/permissions), it is considered feasible to obtain this information. This is because URLs are exposed in
various places, such as browser histories and server logs. See also RFC 3986.

•
•

1.

MindBytes GmbH Page 12 of 27

https://example.com/consumer/1232211222/users/asd123-a12f-a12f-a12f-09asdoaijs/permissions
https://example.com/consumer/1232211222/users/asd123-a12f-a12f-a12f-09asdoaijs/permissions
https://datatracker.ietf.org/doc/html/rfc3986#section-7.5

Figure 6 - Changing the sub parameter in the JWT
to the user ID of pentest04

Figure 7 - Requesting data from MB-Organization2 with forged JWT

Login with own user account, pentest01:
Log in normally to the application using the account pentest01. A JWT is then issued. The JWT is used for authentication in API calls via the HTTP Authorization
header. The illustration for analyzing the JWT shows its content in a Base64-decoded format. The adjacent image shows an example of a legitimate HTTP call to
an endpoint of Organization1 with a valid JWT for user pentest01.

JWT Manipulation:
Copy the middle part of the JWT (delimited by dots . as marked in the previous
illustration), Base64-decode it, replace the ID in the sub parameter with the ID of user
pentest04 (asd123-dead-beef-a12f-09asdoaijs22), and Base64-encode it again. Replace the
middle part of the JWT in the HTTP request with the manipulated version.

Impersonating user pentest04:
With the manipulated JWT, access to resources of MB-Organization2 is now possible,
where user pentest04 (and not pentest01) has privileges. An example is accessing the
customer database of MB-Organization2. The successful call is shown in the adjacent
image. The customer number required for accessing the endpoint must also be known
and can likely be easily obtained through internet research.

2.

3.

4.

MindBytes GmbH Page 13 of 27

3.3 FIN-03: Injecting malicious content into website cache
Affected:

https://example.com/
CVSS v3.1: 7.5 (High)

3.3.1 Summary
Some website content is generated based on user input. Then the generated content is stored in the cache and delivered to other website visitors. Attackers could
exploit this to inject malicious content and thereby attack other visitors.

Possible consequences of successful exploitation

Injecting malicious content, which is delivered to other website visitors, with the following impac:
Manipulating the appearance of the website
Executing malicious JavaScript code
Redirecting users to malicious websites

Examples of prerequisites for exploitation

Attackers must carefully analyze the caching behavior of the website
Malicious content must be reinserted when the cache expires
Users need to navigate to a cache entry manipulated by the attacker on the homepage

This could potentially be the entire website or it could happen by sharing of URLs to manipulated pages

•

•
◦

◦

◦

•
•
•

◦

MindBytes GmbH Page 14 of 27

https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:H/PR:N/UI:R/S:C/C:L/I:H/A:L

3.3.2 Recommendation
Evaluate whether the page content can be generated without relying on user input from the headers X-Forwarded-Host and X-Forwarded-Prefix
If this is not possible, implement one of the following measures:

Overwrite any user input in headers from systems involved in communication with predefined values
Filter received values against a list of valid values

Look for other headers, parameters, or locations that may be used to generate page content and can be influenced by users
Posible temporary solution, until the vulnerability is resolved:

Disable the caching mechanism (this would also take away the benefits of caching, though)

3.3.3 Technical Details
The server cache content is generated based on the headers X-Forwarded-Host and X-Forwarded-Prefix.
Both headers can be set by users in HTTP requests and filled with malicious content. The content placed in the cache is then delivered to other visitors accessing the
website. This type of attack is also known as Web Cache Poisoning.

Based on our observation, the cache is valid for 200 seconds. After this time, the cache is renewed when the next website is accessed next. Therefore, after this tome
has elapsed, attackers must reinsert their malicious content before a legitimate user accesses the website.

To avoid disrupting regular website operations, we created a separate cache entry using the URL parameter cachebuster. This ensured that the cache entries required
for regular website access remained untouched. However, attacks are also possible on the regular cache entries, which would affect every legitimate website visitor.

The following sections describe potential attacks resulting from the caching behavior.

•
•

◦

◦

•
•

◦

MindBytes GmbH Page 15 of 27

https://portswigger.net/web-security/web-cache-poisoning

Figure 8 - Injecting JavaScript code into the cache

Executing malicious JavaScript code

When calling the JavaScript resource global.js, the application uses the HTTP header X-
Forwarded-Host to generate parts of the code. This allows attackers to extend the functionality
of the script and insert malicious code on every page that includes the script.

Execution of the injected code can be triggered by accessing the URL https://example.com. The
manipulated script is embedded in a large number of pages, increasing the likelihood of
execution.

To avoid disrupting production operations, the cachebuster parameter was used in this case as
well. This parameter is automatically added by the proxy tool Burp Suite when loading the
JavaScript resource. An attacker would need to manipulate the correct cache entry of the script
to successfully execute the injected code.

Redirecting to malicious websites

When accessing the homepage and other existing directories, such as https://
www.example.com, the application uses the header X-Forwarded-Host to generate
the correct user redirection. The redirection is also stored in the website cache.
Manipulating the HTTP header leads to a redirection to the specified domain, whch
could potentially be a malicious website.

A manipulation as shown in the figure causes other users accessing the URL
https://www.example.com/?cachebuster=mindbytes to be redirected to the
MindBytes website.

MindBytes GmbH Page 16 of 27

https://example.com/global.js?v=1
https://example.com
https://www.example.com
https://www.example.com
https://www.example.com/?cachebuster=mindbytes

Figure 9 - Injecting a malicious redirect into the cache

Figure 10 - Injecting manipulated content

Manipulating web content

For generating page content, both the X-Forwarded-Host and X-Forwarded-Prefix
headers are used. Specifically, the provided content was embedded on the website
as the HTML tag <base href="https://<forwarded-host>/<forwarded-prefix> , among
others. This meta tag instructs the browser to load all relative URLs from the
specified domain or URL.

When accessing the manipulated website, this domain was blocked by the browser.
This was due to the configured Content-Security-Policy , which allows loading
resources from the site's own and selected domains only.

MindBytes GmbH Page 17 of 27

3.4 FIN-04: Spring Boot Actuator enabled
Affected:

https://example.com/
CVSS v3.1: 7.5 (High)

3.4.1 Summary
The Actuator provides functions for monitoring the application and is part of the Java Spring Framework. The Spring Boot Actuator allows extracting detailed
information valuable to attackers. In this specific case, it enables the takeover of sessions belonging to other users.

Possible consequences of successful exploitation

Extraction of sensitive information
Access to session cookies of other users, enabling subsequent access to the application with their permissions
Additional attacks made possible by utilizing the sensitive information, such as using disclosed credentials

Examples of prerequisites for exploitation

A valid user account is required for most endpoints
The URL must be known – can be easily guessed
The attacker may need to be in the correct network position to utilize the information

For example, the database must be accessible to use the credentials

•

•
•
•

•
•
•

◦

MindBytes GmbH Page 18 of 27

https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:L/PR:L/UI:R/S:U/C:H/I:N/A:N/CR:H

Figure 11 - Viewing a Session Cookie within the exported heap

3.4.2 Recommendation
Evaluate whether the Actuator is necessary
Disable the Actuator or restrict its functionality
Change any potentially exposed sensitive information, such as database credentials

3.4.3 Technical Details
The Spring Boot Actuator is accessible at the URL https://example.com/actuator,
listing all available functionalities.

In particular, the endpoint /actuator/heapdump is interesting for attackers. This
endpoint allows a snapshot of the Java Heap to be created. The Heap is the
memory area where the application stores its objects. For instance, it includes
environment variables as well as objects related to current HTTP requests.

The illustration shows the heap, which was exported with the regular user pentest1 ,
in a text editor. The snippet reveals that the heap contains details of current HTTP
requests. Among other things, we were able to access the session cookies JSESSIONID of other active users.

The extracted session cookie is valid and can be used in a browser. This allows access to the application as another user.

The exported heap also contained other sensitive information. For example, it included the values of the environment variables db.url , db.username , and db.password .
This would likely enable access to the database, provided itcan be reached over the network.

•
•
•

MindBytes GmbH Page 19 of 27

https://example.com/actuator
https://example.com/actuator/heapdump

3.5 FIN-05: Execution of sensitive actions without identity verification
Affected:

https://example.com/
CVSS v3.1: 5.6 (Medium)

3.5.1 Summary
Sensitive actions can be performed without first verifying the legitimacy of the user. Specifically, users can change their password without re-entering their current
password. This increases the risk of account takeover in the case of unattended sessions.

Possible consequences of successful exploitation

Attackers with access to an active user session can perform sensitive actions without restriction:

Specifically, the password can be changed, granting the attacker full control over the account
The legitimate user would (temporarily) lose access to the account
The attacker would be able to perform any action permitted by the account's privileged
Often enables access to sensitive information or deletion of the account

Examples of prerequisites for exploitation

There are several attack scenarios where this lack of protection can be exploited:

Attackers use a cross-site scripting vulnerability, for example, to perform the sensitive action remotely
A user leaves an authenticated session unattended, e.g., on shared computers

•

•
•
•
•

•
•

MindBytes GmbH Page 20 of 27

https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:L/I:L/A:L

Figure 12 - Password change without knowledge of the old password

3.5.2 Recommendation
Verify the user's password or use a different authentication method before executing sensitive actions

3.5.3 Technical Details

The illustration shows that the user's password can be changed without requiring the old
password to be entered.

•

MindBytes GmbH Page 21 of 27

3.6 FIN-06: Missing HTTP security headers
Affected:

https://example.com/
CVSS v3.1: 4.2 (Medium)

3.6.1 Summary
Configuring HTTP security headers can increase the security of web applications. Typical attacks become more difficult or can be prevented altogether. The headers
should be seen as an additional security measure and do not replace the secure programming of web applications.

Possible consequences of successful exploitation

Exploiting typical vulnerabilities, such as clickjacking or cross-site scripting, is easier when there are no security headers; configuring them can make exploits more
difficult or prevent them altogether

Examples of prerequisites for exploitation

Scenarios in which the headers offer security-relevant advantages require vulnerabilities in the application and/or user interaction

3.6.2 Recommendation
If possible, set the missing security headers on all listed websites (see "Technical details")
Configuration recommendations can be found in the respective sections of the OWASP Cheat Sheets:
Strict-Transport-Security | Content-Security-Policy | X-Frame-Options, | X-Content-Type-Options | Referrer-Policy | Permissions-Policy
Improve header configuration for the following websites:

https://example.com
Don't use the unsafe-eval and unsafe-inline directives in the content security policy

•

•

•

•
•

•
◦

▪

MindBytes GmbH Page 22 of 27

https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:H/PR:N/UI:R/S:U/C:L/I:L/A:N
https://cheatsheetseries.owasp.org/cheatsheets/HTTP_Headers_Cheat_Sheet.html#strict-transport-security-hsts
https://cheatsheetseries.owasp.org/cheatsheets/HTTP_Headers_Cheat_Sheet.html#content-security-policy-csp
https://cheatsheetseries.owasp.org/cheatsheets/HTTP_Headers_Cheat_Sheet.html#x-frame-options
https://cheatsheetseries.owasp.org/cheatsheets/HTTP_Headers_Cheat_Sheet.html#x-content-type-options
https://cheatsheetseries.owasp.org/cheatsheets/HTTP_Headers_Cheat_Sheet.html#referrer-policy
https://cheatsheetseries.owasp.org/cheatsheets/HTTP_Headers_Cheat_Sheet.html#permissions-policy-formerly-feature-policy
https://example.com

The configured content security policy can be evaluated with the CSP Evaluator

3.6.3 Technical Details
The following table provides an overview of the configured security headers on the websites.

Headers marked with ✓ are set and classified as appropriate
Headers marked with ➿ are set, but the configuration should be checked and improved
Headers not marked are not set

Website Strict-Transport-Security Content-Security-Policy X-Frame-Options X-Content-Type-Options Referrer-Policy Permissions-Policy
https://example.com ✓ ➿

•

•
•
•

MindBytes GmbH Page 23 of 27

https://csp-evaluator.withgoogle.com/
https://example.com

4 Project scope

4.1 Persons involved
Name Role Mail address
Simon Holl Project lead & Pentester hallo@mind-bytes.de

Christian Stehle Pentester hallo@mind-bytes.de

Nina Wagner Pentester hallo@mind-bytes.de

Anja Neudert Review

Sarah Smith Head of IT sarah.smith@example.com

4.2 Test period
02.01.25 - 10.01.25

4.3 Test subject
Asset type Value Description
Web application https://example.com/ Customer portal

MindBytes GmbH Page 24 of 27

mailto:hallo@mind-bytes.de
mailto:hallo@mind-bytes.de
mailto:hallo@mind-bytes.de
mailto:null
mailto:sarah.smith@example.com

4.4 Access method
Access took place over the Internet.

4.5 Provided accounts
Account Role/Privileges
pentest01 Role: user

pentest02 Role: user

pentest03 Role: admin

pentest04 Role: admin

4.6 Provided information
To enable targeted and efficient assessments, the following data was provided:

Source code of the web application•

MindBytes GmbH Page 25 of 27

5 Appendix

5.1 Explanations of rating scales
Common Vulnerability Scoring System (CVSS) MindBytes score

Explanation Standardized rating system for the severity of security
vulnerabilities in software and systems
Technical rating
De facto industry standard

MindBytes' evaluation system with a risk-based approach and
focus on (potential) damage and likelihood
In this context, likelihood means how easily a vulnerability can
be exploited
The score is based on the CVSS rating but also takes into
account the number and importance of the affected systems

Rating scales Scale from 0 (Info) to 10 (critical) for classifying the severity of a
vulnerability

Scale from 0-5 for classifying damage and likelihood

6 List of changes
Version Date Change Who
1.0 17.01.25 Release Christian Stehle

•

•
•

•

•

•

MindBytes GmbH Page 26 of 27

7 Disclaimer
This project was carried out in order to assess the security of the components in focus and to identify weaknesses.

This test is a snapshot and not a continuous security monitoring. The security situation may change over time, for example due to changes to the components,
disclosed information, new attack techniques or vulnerabilities.
The project was carried out within a limited time frame. This may mean that not all potential vulnerabilities and disclosed information were identified.
Even though the project was carried out with great care, false positives cannot be completely ruled out.

8 Legal information
MindBytes GmbH | Probststraße 15 | 70567 Stuttgart | Germany

+49 711 20709567 | hallo@mind-bytes.de | https://mind-bytes.de

Local Court: Stuttgart, HRB 790784 | VAT number: DE363069855

Represented by Christian Stehle, Nina Wagner, Simon Holl

1.

2.
3.

MindBytes GmbH Page 27 of 27

mailto:hallo@mind-bytes.de
https://mind-bytes.de

	Contents
	Management summary
	Recommended actions

	Technical summary
	Table of findings
	Next steps
	Starting point in the project
	Project limitations
	Postprocessing

	Findings
	FIN-01: Manipulating database queries – SQL Injection
	Summary
	Possible consequences of successful exploitation
	Examples of prerequisites for exploitation

	Recommendation
	Technical Details

	FIN-02: User impersonation
	Summary
	Possible consequences of successful exploitation
	Examples of prerequisites for exploitation

	Recommendation
	Technical Details

	FIN-03: Injecting malicious content into website cache
	Summary
	Possible consequences of successful exploitation
	Examples of prerequisites for exploitation

	Recommendation
	Technical Details
	Executing malicious JavaScript code
	Redirecting to malicious websites
	Manipulating web content

	FIN-04: Spring Boot Actuator enabled
	Summary
	Possible consequences of successful exploitation
	Examples of prerequisites for exploitation

	Recommendation
	Technical Details

	FIN-05: Execution of sensitive actions without identity verification
	Summary
	Possible consequences of successful exploitation
	Examples of prerequisites for exploitation

	Recommendation
	Technical Details

	FIN-06: Missing HTTP security headers
	Summary
	Possible consequences of successful exploitation
	Examples of prerequisites for exploitation

	Recommendation
	Technical Details

	Project scope
	Persons involved
	Test period
	Test subject
	Access method
	Provided accounts
	Provided information

	Appendix
	Explanations of rating scales

	List of changes
	Disclaimer
	Legal information

